If you were wondering how the securities in the world move against each other, the picture below is the answer.
This picture shows the correlation various currencies, indices and commodity prices by linking together three powerful types of visualisations.
The first is a coloured correlation matrix. In this picture, we have three securities: the British Pound (GBP), Gold Price (XAU) and the Dow Jones Index (^DJI). The price of GBP and Gold tend to move slightly together, and have a correlation of 0.36 (36%). So the cell that’s between GBP and XAU is marked with 36. Similarly, the cell that’s between XAU and ^DJI has a –64 because Gold and the Dow Jones index are slightly negatively correlated.
The colour coding is based on the correlation. Red is -1, Green is +1 and Yellow is 0.
For example, compare Gold and the Dow Jones. It isn’t a straight-forward negative correlation. In fact, it almost looks like there were two periods: one in which gold was high when the Dow Jones was low, and vice versa. But within those periods, there appears to have been a mild positive correlation.
The third is the hierarchical cluster. The securities is grouped into similar ones based on their correlation. For example, GBP and Silver (XAG) and reasonably close to each other, and form one group. This group is most closely related to the Euro (EUR), and the three of them are closest to the Australian Dollar.
Arranging the securities by the hierarchy makes it easy to spot groups of securities that tend to move together.
For example, in the original visualisation, there appear to be a set of logical blocks
At the centre, four securities – the Pakistani Rupee (PKR), the Sensex (^BSES), the FTSE (^FTSE) and the S&P (^GSPC) – tend to move together, with each other; but move in the opposite direction to the next group of securities – the Singapore Dollar (SGD), the Japanese Yen (JPY), Gold (XAU), the Swiss Franc (CHF) and the Chinese Yuan (CNY).
Similarly, the Swedish Krona, Canadian Dollar, Indian Rupee, Hong Kong Dollar and Mexican Peso form yet another group that moves together, but in the opposite direction from the strong Asian currencies in the block above.
We at Gramener have named this visualisation a clusterplot. It’s a powerful technique when applied to time series of multiple (typically 5 – 50) variables.
Here are some cases you might consider using them:
In today’s fast-paced world of e-commerce and supply chain logistics, warehouses are more than just… Read More
What does it mean to redefine the future of manufacturing with AI? At the heart… Read More
In 2022, Americans spent USD 4.5 trillion on healthcare or USD 13,493 per person, a… Read More
In the rush to adopt generative AI, companies are encountering an unforeseen obstacle: skyrocketing computing… Read More
AI in Manufacturing: Drastically Boosting Quality Control Imagine the factory floors are active with precision… Read More
Did you know the smart factory market is expected to grow significantly over the next… Read More
This website uses cookies.
Leave a Comment